Strain differences in pH-sensitive K+ channel-expressing cells in chemosensory and nonchemosensory brain stem nuclei.
نویسندگان
چکیده
The ventilatory CO2 chemoreflex is inherently low in inbred Brown Norway (BN) rats compared with other strains, including inbred Dahl salt-sensitive (SS) rats. Since the brain stem expression of various pH-sensitive ion channels may be determinants of the CO2 chemoreflex, we tested the hypothesis that there would be fewer pH-sensitive K(+) channel-expressing cells in BN relative to SS rats within brain stem sites associated with respiratory chemoreception, such as the nucleus tractus solitarius (NTS), but not within the pre-Bötzinger complex region, nucleus ambiguus or the hypoglossal motor nucleus. Medullary sections (25 μm) from adult male and female BN and SS rats were stained with primary antibodies targeting TASK-1, Kv1.4, or Kir2.3 K(+) channels, and the total (Nissl-stained) and K(+) channel immunoreactive (-ir) cells counted. For both male and female rats, the numbers of K(+) channel-ir cells within the NTS were reduced in the BN compared with SS rats (P < 0.05), despite equal numbers of total NTS cells. In contrast, we found few differences in the numbers of K(+) channel-ir cells among the strains within the nucleus ambiguus, hypoglossal motor nucleus, or pre-Bötzinger complex regions in both male and female rats. However, there were no predicted functional mutations in each of the K(+) channels studied comparing genomic sequences among these strains. Thus we conclude that the relatively selective reductions in pH-sensitive K(+) channel-expressing cells in the NTS of male and female BN rats may contribute to their severely blunted ventilatory CO2 chemoreflex.
منابع مشابه
Chemosensory responses to CO2 in multiple brain stem nuclei determined using a voltage-sensitive dye in brain slices from rats.
We used epifluorescence microscopy and a voltage-sensitive dye, di-8-ANEPPS, to study changes in membrane potential during hypercapnia with or without synaptic blockade in chemosensory brain stem nuclei: the locus coeruleus (LC), the nucleus of the solitary tract, lateral paragigantocellularis nucleus, raphé pallidus, and raphé obscurus and, in putative nonchemosensitive nuclei, the gigantocell...
متن کاملChemosensory responses to CO 2 in multiple brainstem nuclei determined using a voltage - 1 sensitive dye in brain slices from rats
293 words). 23 We used epifluorescence microscopy and a voltage sensitive dye, di-8-ANEPPS, to study 24 changes in membrane potential during hypercapnia with or without synaptic blockade in 25 chemosensory brainstem nuclei: the locus coeruleus (LC), the nucleus of the solitary tract (NTS), 26 lateral paragigantocellularis nucleus (PGCL), raphé pallidus and raphé obscurus, and in putative 27 non...
متن کاملExistence of a delayed rectifier K+ current in the membrane of human embryonic stem cel
Introduction: Human embryonic stem cells (hESCs) are pluripotent cells that can proliferate and differentiate to many cell types. Their electrophysiological properties have not yet been chracterzed. In this study, the passive properties (such as resting membrane potential, input resistance and capacitance) and the contribution of delayed rectifier K+ channel currents to the membrane conducta...
متن کاملBiophysical and electropharmacological properties of single mitoKATP channel in rat brain mitochondrial inner membrane
Introduction: Different ATP-sensitive potassium channels have been detected in the mitochondrial inner membrane of cells. They are suggested to be involved in cell processes including cell protection. Here, we characterized the biophysical and electropharmacological properties of a KATP channel in the brain mitochondrial inner membranes. Methods: After removing and homogenizing the rat brain...
متن کاملTASK-2 channels contribute to pH sensitivity of retrotrapezoid nucleus chemoreceptor neurons.
Phox2b-expressing glutamatergic neurons of the retrotrapezoid nucleus (RTN) display properties expected of central respiratory chemoreceptors; they are directly activated by CO2/H(+) via an unidentified pH-sensitive background K(+) channel and, in turn, facilitate brainstem networks that control breathing. Here, we used a knock-out mouse model to examine whether TASK-2 (K2P5), an alkaline-activ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 117 8 شماره
صفحات -
تاریخ انتشار 2014